论文标题
关于偏斜PBW扩展的弱歼灭者和nilpotent相关的素数
On Weak Annihilators and Nilpotent Associated Primes of Skew PBW Extensions
论文作者
论文摘要
我们研究了Ouyang和Birkenmeier \ cite {Ouyangbirkenmeier2012}定义的弱歼灭者和nilpotent相关的素数的概念。我们将有关歼灭者和相关的通勤环和偏度多项式环的相关数量的文献中提出的几个结果扩展到了以前未考虑的更通用的代数环境。我们以代数的代数,代数,非交通空间,非交通性代数几何形状和理论物理学的差异操作者的形式来体现我们的结果。最后,我们为未来的研究提出了一些想法。
We investigate the notions of weak annihilator and nilpotent associated prime defined by Ouyang and Birkenmeier \cite{OuyangBirkenmeier2012} in the setting of noncommutative rings having PBW bases. We extend several results formulated in the literature concerning annihilators and associated primes of commutative rings and skew polynomial rings to a more general setting of algebras not considered before. We exemplify our results with families of algebras appearing in the theory of enveloping algebras, differential operators on noncommutative spaces, noncommutative algebraic geometry, and theoretical physics. Finally, we present some ideas for future research.