论文标题
部分可观测时空混沌系统的无模型预测
A New Probabilistic Representation of the Alternating Zeta Function and a New Selberg-like Integral Evaluation
论文作者
论文摘要
在本文中,我们介绍了交替的Zeta函数的两个新表示。我们表明,对于$ C中的任何S $ \,此功能可以作为一系列决定因素的限制计算。然后,我们将这些决定因素表示为对Dixon-Anderson密度的随机向量功能的期望。对更通用的交替系列的这种表示的概括使我们能够评估Selberg型积分与广义的Vandermonde决定因素。
In this paper, we present two new representations of the alternating Zeta function. We show that for any s $\in$ C this function can be computed as a limit of a series of determinant. We then express these determinants as the expectation of a functional of a random vector with Dixon-Anderson density. The generalization of this representation to more general alternating series allows us to evaluate a Selberg-type integral with a generalized Vandermonde determinant.