论文标题
M理论中的可集成的3D晶格模型
Integrable 3D lattice model in M-theory
论文作者
论文摘要
有人认为,M理论中特定麸皮系统的超对称指数等于可集成的三维晶格模型的分区函数。晶格模型的局部玻尔兹曼权重可以满足Zamolodchikov四面体方程的概括。在特殊情况下,该模型是通过Kapranov和Voevodsky以及Bazhanov和Sergeev发现的四面体方程的解决方案来描述的。
It is argued that the supersymmetric index of a certain system of branes in M-theory is equal to the partition function of an integrable three-dimensional lattice model. The local Boltzmann weights of the lattice model satisfy a generalization of Zamolodchikov's tetrahedron equation. In a special case the model is described by a solution of the tetrahedron equation discovered by Kapranov and Voevodsky and by Bazhanov and Sergeev.