论文标题

有限数学是最一般的(基本)数学

Finite mathematics as the most general (fundamental) mathematics

论文作者

Lev, Felix M

论文摘要

本文的目的是在最简单的水平上解释为什么基于有限特征$ p $的有限数学比标准数学更一般(基本)。大多数数学家和物理学家的信念是,出于历史原因,标准数学是最基本的。然而,简单的数学论点表明,标准数学(涉及无限概念)是在正式限制$ p \ to \ infty $中的有限数学的统一案例:标准数学是在撤销数字时,在撤消数字的情况下,在否决的情况下,数学是由有限的数学产生的。基于有限特征$ p $的有限环比标准量子理论更通用的量子理论,因为后者是正式限制$ p \ to \ infty $中前者的退化情况。

The purpose of this paper is to explain at the simplest possible level why finite mathematics based on a finite ring of characteristic $p$ is more general (fundamental) than standard mathematics. The belief of most mathematicians and physicists that standard mathematics is the most fundamental arose for historical reasons. However, simple mathematical arguments show that standard mathematics (involving the concept of infinities) is a degenerate case of finite mathematics in the formal limit $p\to\infty$: standard mathematics arises from finite mathematics in the degenerate case when operations modulo a number are discarded. Quantum theory based on a finite ring of characteristic $p$ is more general than standard quantum theory because the latter is a degenerate case of the former in the formal limit $p\to\infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源