论文标题
低级别的Wasserstein多项式混乱扩展的生成建模
Generative modeling with low-rank Wasserstein polynomial chaos expansions
论文作者
论文摘要
提出了一种新的Wasserstein多元素多项式混乱(WPCE),这是受到估计Wasserstein距离的计算最佳运输的最新进展的启发。开发的方法将无监督的学习与随机向量$ y $的明确功能表示结合在一起。它的训练仅依赖于未知分布的有限样品集,该样品用于最大程度地减少正规经验的Wasserstein公制,称为Debiased sindhorn Divergence。一种激励该方法的有趣应用来自于微尺度上定义的非周期性随机字段的数值升级。 WPCE可以编码有关有效物质行为的高阶随机信息,与随机均质化的恒定表征相反。新方法的一个惊人特征是将常见的差异传输图概括为不连续和非注射模型类$ \ Mathcal {M} $具有不同输入和输出维度的情况。它计算一个(函数)关系$ y = \ MATHCAL {M}(x)$分配,输入随机变量$ x $和目标$ y $。新的堆叠张量列车(STT)格式可以减轻PCE的指数增长。通过选择模型类$ \ MATHCAL {M} $和平滑损耗功能,高阶优化方案,尤其是Riemannian Descent方法。提出的方法在数值上说明了一个高维的上尺度问题,该问题考虑了微观随机非周期性复合材料。它导致适应性随机坐标的计算有效宏观随机场。通过对不连续的模型类使用松弛,多模式分布也变得可行。
A new Wasserstein multi-element polynomial chaos expansion (WPCE) is proposed, which is inspired by recent advances in computational optimal transport for estimating Wasserstein distances. The developed method combines unsupervised learning with the explicit functional representation of a random vector $Y$. Its training only relies on a finite set of samples from an unknown distribution, which is used to minimize a regularized empirical Wasserstein metric known as debiased Sinkhorn divergence. An interesting application that motivates the approach comes from the numerical upscaling of non-periodic random fields defined on a micro-scale. The WPCE can encode higher order stochastic information about the effective material behavior in contrast to the constant characterization with stochastic homogenization. A striking feature of the new method is the generalization of common diffeomorphic transport maps to the case of discontinuous and non-injective model classes $\mathcal{M}$ with possibly different input and output dimension. It computes a (functional) relation $Y=\mathcal{M}(X)$ in distribution with input random variables $X$ and target $Y$. The exponential growth of the PCE is alleviated by a new stacked tensor train (STT) format. By the choice of the model class $\mathcal{M}$ and the smooth loss function, higher-order optimization schemes and in particular Riemannian descent methods become possible. The proposed approach is illustrated numerically with a high-dimensional upscaling problem, which considers a microscopic random non-periodic composite material. It results in a computationally tractable effective macroscopic random field in adapted stochastic coordinates. By using a relaxation to a discontinuous model class, multimodal distributions also become tractable.