论文标题

球形自旋玻璃的自由能的收敛性

Convergence of the free energy for spherical spin glasses

论文作者

Subag, Eliran

论文摘要

我们证明,随着尺寸$ n $倾向于无限,任何球形混合$ p $ spin模型的自由能都会收敛。虽然收敛是巴黎公式的结果,但我们给出的证明与公式无关,并使用了众所周知的Guerra-Toninelli插值方法。后者是针对带有Ising旋转的模型发明的,以证明自由能是超级加化的,因此(由$ n $进行标准化)收敛。但是,在球形情况下,配置空间不是产品空间,无法直接应用插值。我们首先将尺寸$ n+m $领域的自由能与尺寸$ n $和$ m $的产品定义的自由能联系起来,然后我们将其应用插值方法。这产生了近似的超级促进性,足以证明收敛性。

We prove that the free energy of any spherical mixed $p$-spin model converges as the dimension $N$ tends to infinity. While the convergence is a consequence of the Parisi formula, the proof we give is independent of the formula and uses the well-known Guerra-Toninelli interpolation method. The latter was invented for models with Ising spins to prove that the free energy is super-additive and therefore (normalized by $N$) converges. In the spherical case, however, the configuration space is not a product space and the interpolation cannot be applied directly. We first relate the free energy on the sphere of dimension $N+M$ to a free energy defined on the product of spheres in dimensions $N$ and $M$ to which we then apply the interpolation method. This yields an approximate super-additivity which is sufficient to prove the convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源