论文标题
热力学对称解析的纠缠熵在可集成系统中
Thermodynamic symmetry resolved entanglement entropies in integrable systems
论文作者
论文摘要
我们开发了一种通用方法,以计算对称性分辨的Rényi和von Neumann纠缠熵(SREE)在相互作用的集成系统中的热力学宏观物质。我们的方法是基于热力学伯特ansatz和大偏差理论的Gärtner-ellis定理的组合。我们为Von Neumann Sree提供了一个明确的简单公式,我们显示的是与电荷部门确定的有效宏观盐的热力学阳性熵一致。专注于XXZ海森堡自旋链,我们根据热状态的ITEBD计算测试结果,找到了良好的一致性。作为应用程序,我们为量子淬灭后SRE的渐近值提供了分析预测。
We develop a general approach to compute the symmetry-resolved Rényi and von Neumann entanglement entropies (SREE) of thermodynamic macrostates in interacting integrable systems. Our method is based on a combination of the thermodynamic Bethe ansatz and the Gärtner-Ellis theorem from large deviation theory. We derive an explicit simple formula for the von Neumann SREE, which we show to coincide with the thermodynamic Yang-Yang entropy of an effective macrostate determined by the charge sector. Focusing on the XXZ Heisenberg spin chain, we test our result against iTEBD calculations for thermal states, finding good agreement. As an application, we provide analytic predictions for the asymptotic value of the SREE following a quantum quench.