论文标题

部分可观测时空混沌系统的无模型预测

On Modular Cohomotopy Groups

论文作者

Li, Pengcheng, Pan, Jianzhong, Wu, Jie

论文摘要

令$ p $为素数,让$π^n(x; \ m athbb {z}/p^r)= [x,m_n(\ mathbb {z}/p^r)] $是来自cw-complexes $ x $的基于同质映射的基于同型映射的集合,以mod $ p^r $ p^r $ p^r $ moore plep $ p^r $ p^z; $ n $,其中$ \ mathbb {z}/p^r $表示整数mod $ p^r $。在本文中,我们首先确定模块化共同体组$π^n(x; \ mathbb {z}/p^r)$,通过主要的共同体学操作的经典方法扩展,并为扩展的分裂度提供条件。其次,我们利用摩尔空间的一些不稳定的同义理论来研究模块化的共同体群。尤其是,确定了$ \ dim(x)\ leq 6 $的组$π^3(x; \ mathbb {z} _ {(2)})$。

Let $p$ be a prime and let $π^n(X;\mathbb{Z}/p^r)=[X,M_n(\mathbb{Z}/p^r)]$ be the set of homotopy classes of based maps from CW-complexes $X$ into the mod $p^r$ Moore spaces $M_n(\mathbb{Z}/p^r)$ of degree $n$, where $\mathbb{Z}/p^r$ denotes the integers mod $p^r$. In this paper we firstly determine the modular cohomotopy groups $π^n(X;\mathbb{Z}/p^r)$ up to extensions by classical methods of primary cohomology operations and give conditions for the splitness of the extensions. Secondly we utilize some unstable homotopy theory of Moore spaces to study the modular cohomotopy groups; especially, the group $π^3(X;\mathbb{Z}_{(2)})$ with $\dim(X)\leq 6$ is determined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源