论文标题
概率布尔逻辑的自适应n-ary激活功能
Adaptive n-ary Activation Functions for Probabilistic Boolean Logic
论文作者
论文摘要
平衡模型复杂性与观察到的数据中包含的信息是学习的核心挑战。为了使复杂性有效的模型存在并可以在高维度中发现,我们需要一个将复杂性的可信概念与简单参数表示相关的计算框架。此外,该框架必须允许通过基于梯度的优化逐渐消除过度复杂性。我们的n- ary或n-argument激活函数通过使用概率的logit表示近似信念函数(概率布尔逻辑)来填补此空白。正如布尔逻辑确定了一组先前命题之间关系的真实性一样,当先决条件,真相表和随之而来的概率表述都概括了预测。我们的激活函数证明了学习任意逻辑的能力,例如使用匹配或更大的ARITY的激活函数,在单层中,在单层中,在单层中进行了二进制排他性析取(P XOR Q)和三元条件脱节的能力。此外,我们使用一个基础表示信仰表,该基础将非零参数的数量直接关联到信仰函数的有效性,从而捕获了逻辑复杂性和有效参数表示之间的具体关系。这打开了通过诱导参数稀疏性来降低逻辑复杂性的优化方法。
Balancing model complexity against the information contained in observed data is the central challenge to learning. In order for complexity-efficient models to exist and be discoverable in high dimensions, we require a computational framework that relates a credible notion of complexity to simple parameter representations. Further, this framework must allow excess complexity to be gradually removed via gradient-based optimization. Our n-ary, or n-argument, activation functions fill this gap by approximating belief functions (probabilistic Boolean logic) using logit representations of probability. Just as Boolean logic determines the truth of a consequent claim from relationships among a set of antecedent propositions, probabilistic formulations generalize predictions when antecedents, truth tables, and consequents all retain uncertainty. Our activation functions demonstrate the ability to learn arbitrary logic, such as the binary exclusive disjunction (p xor q) and ternary conditioned disjunction ( c ? p : q ), in a single layer using an activation function of matching or greater arity. Further, we represent belief tables using a basis that directly associates the number of nonzero parameters to the effective arity of the belief function, thus capturing a concrete relationship between logical complexity and efficient parameter representations. This opens optimization approaches to reduce logical complexity by inducing parameter sparsity.