论文标题
一些足够的条件,可以使Anosov差异性传播
Some sufficient conditions for transitivity of Anosov diffeomorphisms
论文作者
论文摘要
给定A $ C^2 $ - Anosov diffemorphism $ f:m \ rightarrow m,$我们证明jacobian条件$ jf^n(p)= 1,每个点$ p $ $ p $,因此$ f^n(p)= p,$含义为过境。作为著名的西奈 - 雷尔·博文理论中的应用,这一结果使我们能够陈述livsic-sinai的经典定理,而不直接将过渡性作为一般假设。我们结果的一个特殊结果是,每一个$ c^2 $ -Anosov differemorlism(对于每个点都是常规的)确实是及物动词的。
Given a $C^2$- Anosov diffemorphism $f: M \rightarrow M,$ we prove that the jacobian condition $Jf^n(p) = 1,$ for every point $p$ such that $f^n(p) = p,$ implies transitivity. As application in the celebrated theory of Sinai-Ruelle-Bowen, this result allows us to state a classical theorem of Livsic-Sinai without directly assuming transitivity as a general hypothesis. A special consequence of our result is that every $C^2$-Anosov diffeomorphism, for which every point is regular, is indeed transitive.