论文标题

扩展$ {\ Mathbb z} _ {2n} $的结构描述

A structural description of extended ${\mathbb Z}_{2n}$-Schottky groups

论文作者

Hidalgo, Ruben A.

论文摘要

Schottky Space $ {\ Mathcal s} _ {G} $的真实点与扩展的kleinian groups $ k $,作为正常子组,是等级$ g $ g $ g $ g $的Schottky goult $γ$,因此$ k/γ\ cong {\ mathb z} _ {2n} $ a $ n for a for a for for a $ n in e n in egger。这些组称为扩展$ {\ Mathbb z} _ {2n} $ - 等级$ g $的Schottky组。 在本文中,我们提供了一种结构分解定理,就这些类别的Klein-Maskit的组合定理而言。

Real points of Schottky space ${\mathcal S}_{g}$ are in correspondence with extended Kleinian groups $K$ containing, as a normal subgroup, a Schottky group $Γ$ of rank $g$ such that $K/Γ\cong {\mathbb Z}_{2n}$ for a suitable integer $n \geq 1$. These kind of groups are called extended ${\mathbb Z}_{2n}$-Schottky groups of rank $g$. In this paper, we provide a structural decomposition theorem, in terms of Klein-Maskit's combination theorems, of these kind of groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源