论文标题
扩展$ {\ Mathbb z} _ {2n} $的结构描述
A structural description of extended ${\mathbb Z}_{2n}$-Schottky groups
论文作者
论文摘要
Schottky Space $ {\ Mathcal s} _ {G} $的真实点与扩展的kleinian groups $ k $,作为正常子组,是等级$ g $ g $ g $ g $的Schottky goult $γ$,因此$ k/γ\ cong {\ mathb z} _ {2n} $ a $ n for a for a for for a $ n in e n in egger。这些组称为扩展$ {\ Mathbb z} _ {2n} $ - 等级$ g $的Schottky组。 在本文中,我们提供了一种结构分解定理,就这些类别的Klein-Maskit的组合定理而言。
Real points of Schottky space ${\mathcal S}_{g}$ are in correspondence with extended Kleinian groups $K$ containing, as a normal subgroup, a Schottky group $Γ$ of rank $g$ such that $K/Γ\cong {\mathbb Z}_{2n}$ for a suitable integer $n \geq 1$. These kind of groups are called extended ${\mathbb Z}_{2n}$-Schottky groups of rank $g$. In this paper, we provide a structural decomposition theorem, in terms of Klein-Maskit's combination theorems, of these kind of groups.