论文标题
爱因斯坦指标在均匀灰色歧管上的coIndex和刚度
Coindex and rigidity of Einstein metrics on homogeneous Gray manifolds
论文作者
论文摘要
任何$ 6 $维的严格差不多Kähler歧管都是爱因斯坦,具有正标曲率。我们在每个紧凑型均匀示例上计算了相对于爱因斯坦 - 希尔伯特功能的度量的coIndex。此外,我们表明,$ f_ {1,2} = \ mathrm {su}(3)/t^2 $上的无限爱因斯坦变形不可集成到爱因斯坦指标的曲线中。
Any $6$-dimensional strict nearly Kähler manifold is Einstein with positive scalar curvature. We compute the coindex of the metric with respect to the Einstein-Hilbert functional on each of the compact homogeneous examples. Moreover, we show that the infinitesimal Einstein deformations on $F_{1,2}=\mathrm{SU}(3)/T^2$ are not integrable into a curve of Einstein metrics.