论文标题

相对化的Chaitin的$ω$的更多结果

Some more results on relativized Chaitin's $Ω$

论文作者

Yu, Liang

论文摘要

我们证明,假设$ \ mathrm {zf} $,并且仅限于任何指向的集合,Chaitin的$ω_U:x \ mapstoω_u^x = \ sum_ {u^x(σ)\ d odarow;从非常强烈的意义上讲,学位不变,回答了描述性集理论中最近的几个问题。此外,我们表明,在$ \ mathrm {zf}+\ mathrm {ad} $下,每个函数$ f $ pu $映射$ x $ to $ x $ - random必须在图灵学位的上锥上不可容纳。

We prove that, assuming $\mathrm{ZF}$, and restricted to any pointed set, Chaitin's $Ω_U:x\mapsto Ω_U^x=\sum_{U^x(σ)\downarrow}2^{-|σ|}$ is not injective for any universal prefix-free Turing machine $U$, and that $Ω_U^x$ fails to be degree invariant in a very strong sense, answering several recent questions in descriptive set theory. Moreover, we show that under $\mathrm{ZF}+\mathrm{AD}$, every function $f$ mapping $x$ to $x$-random must be uncountable-to-one over an upper cone of Turing degrees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源