论文标题

部分可观测时空混沌系统的无模型预测

The TAP free energy for high-dimensional linear regression

论文作者

Qiu, Jiaze, Sen, Subhabrata

论文摘要

我们得出了贝叶斯线性回归中后验分布的对数正差常数的变异表示,并具有均匀的球形先验和i.i.d.高斯设计。我们以“比例”的渐近状态工作,观测值和特征数量以成比例的速度增长。严格地建立了由旋转玻璃理论引起的无thou-anderson-palmer(TAP)近似,并证明了Krzakala等人的猜想。 al。 (2014)在球形先验的特殊情况下。

We derive a variational representation for the log-normalizing constant of the posterior distribution in Bayesian linear regression with a uniform spherical prior and an i.i.d. Gaussian design. We work under the "proportional" asymptotic regime, where the number of observations and the number of features grow at a proportional rate. This rigorously establishes the Thouless-Anderson-Palmer (TAP) approximation arising from spin glass theory, and proves a conjecture of Krzakala et. al. (2014) in the special case of the spherical prior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源