论文标题
部分可观测时空混沌系统的无模型预测
Numerical study of airborne particle dynamics in vortices subject to electric field
论文作者
论文摘要
捕获,选择性收集和空中颗粒的飞行操纵是各种主动增长的气溶胶技术应用中的三个重要功能要求。在这种情况下,由于外部施加的静电力而引起的空气动力阻力,颗粒惯性和介电性(DEP)力显着影响微米大小的颗粒的行为。在这项工作中,我们从数值上研究了这些力的组合如何唯一影响未充电或轻度充电的空气颗粒的行为,这与它们的个人影响不同。分析了两个曲面电极表面之间结构良好的稳定涡流流中未充电的粒子运动。沿电极尖端和远离电极尖端的涡旋空气循环增强并恶化在电极上的静电颗粒捕获,分别称为CO和反向相对于颗粒上的静电力。电场下的反涡流中的颗粒揭示了由于阻力,惯性和DEP力的相互作用而导致的各种独特行为。由于电极表面凸的涡流结构的变形导致粒子的惯性极限循环轨迹陷入反向。随着空气中的颗粒在空间上被隔离,比较小的颗粒更进一步将较大的颗粒捕获。无量纲数$ξ_v$的值,DEP力量和粒子惯性的比例代表了工作流量和电场强度的组合。随着其值的增加,这种配置中粒子捕获的惯性截止突然将其临界值捕获为$ξ_v\ \ 0.2 $。由于涡旋捕获,惯性驱动和静电捕获的相互作用,颗粒的选择性沉积在大小和密度的封闭范围内出现。
Capture, selective collection and flight manipulation of airborne particulate are three important functional requirements in various actively growing aerosol technology applications. Aerodynamic drag, particle inertia and dielectrophoretic (DEP) force due to externally applied electrostatic forces influence the behavior of micron sized particles significantly, in such situations. In this work, we numerically study how a combination of these forces uniquely influences the behavior of uncharged or mildly charged airborne particles, distinct from that with their individual influences. Uncharged particle movements in a numerically fabricated well structured steady vortical flow between two curved electrode surfaces are analyzed. Vortical air circulation towards and away from the electrode tip enhances and deteriorates electrostatic particulate capture on the electrodes, termed as co and counter directions with respect to the electrostatic force on particles respectively. Particles in counter vortices under an electric field reveals a rich variety of unique behaviors due to the interplay of drag, inertia and DEP forces. Distortion of the vortex structure due to convexity of electrode surfaces results in an inverse inertial limit cycle trajectory trapping of particles; with the airborne particles spatially segregated, trapping larger particles further inside the vortex than the smaller particles.Value of a dimensionless number $ξ_v$, the ratio of DEP force and particle inertia, represents the combination of the operating flow and electric field strengths. Inertial cut-off of particle capture in this configuration abruptly shift to DEP capture at a critical value of $ξ_v\approx 0.2$, as its value increases. Selective deposition of particles within a closed range of size and density, emerges due to the interplay of vortex trapping, inertial expulsion and electrostatic capture.