论文标题
在边缘周期性时间图中查找未成年人和子图的多参数分析
Multi-Parameter Analysis of Finding Minors and Subgraphs in Edge Periodic Temporal Graphs
论文作者
论文摘要
我们研究了确定边缘周期时间图(EPG)的结构特性的计算复杂性。 EPG是随时间变化的图表,可以紧凑地表示动态网络组件的周期性行为,例如,在铁路网络上的火车时间表。在EPG中,对于图形的每个边缘$ e $,二进制字符串$ s_e $确定在哪个时间步骤中存在边缘,即$ e $在时间中存在time step $ t $,并且仅当$ s_e $含有$ 1 $的位置$ t \ mod | mod | s_e | $。由于这种周期性,EPG充当复杂周期系统的非常紧凑的表示,甚至可以比代表同一系统一个时期的经典时间表成倍小,因为后者明确包含整个图的整个序列。在本文中,我们研究了EPG的新概念的基本问题的计算复杂性,例如两个顶点之间的最短遍历时间是什么?是否有一个时间步骤,图(1)不含较小的时间; (2)包含未成年人; (3)不含子图; (4)包含一个子图;关于给定的次要或子图。我们为上述问题的多个参数组合提供了详细的参数化分析,包括几种参数化算法。
We study the computational complexity of determining structural properties of edge periodic temporal graphs (EPGs). EPGs are time-varying graphs that compactly represent periodic behavior of components of a dynamic network, for example, train schedules on a rail network. In EPGs, for each edge $e$ of the graph, a binary string $s_e$ determines in which time steps the edge is present, namely $e$ is present in time step $t$ if and only if $s_e$ contains a $1$ at position $t \mod |s_e|$. Due to this periodicity, EPGs serve as very compact representations of complex periodic systems and can even be exponentially smaller than classic temporal graphs representing one period of the same system, as the latter contain the whole sequence of graphs explicitly. In this paper, we study the computational complexity of fundamental questions of the new concept of EPGs such as what is the shortest traversal time between two vertices; is there a time step in which the graph (1) is minor-free; (2) contains a minor; (3) is subgraph-free; (4) contains a subgraph; with respect to a given minor or subgraph. We give a detailed parameterized analysis for multiple combinations of parameters for the problems stated above including several parameterized algorithms.