论文标题
基于瓷砖的DNA自组装的建模
Tile Based Modeling of DNA Self-Assembly for Two Graph Families with Appended Paths
论文作者
论文摘要
脱氧核糖核酸(DNA)的分支分子可以通过互补的凝聚力链碱基配对自组装成纳米结构。 DNA纳米结构的产生在靶向药物输送和生物分子计算中很有价值。考虑到实验室过程的理论效率,我们使用灵活的瓷砖模型进行DNA组装。我们的目的是最大程度地减少组装某些目标结构所需的不同类型的分支连接分子的数量。我们将目标结构表示为离散图和分支DNA分子作为半边缘的顶点。我们介绍了t ta和Lollipop图系列的三个级别限制性条件下,所需的分支分子和粘性末端类型的最小数量。这些家族代表周期和完整的图形,并通过单个切割vertex附加了路径。我们包括三个有关此类顶点诱导的路径子图的普通引理。通过证明和示例,我们证明了确定最佳构建策略可能出现的挑战。
Branched molecules of deoxyribonucleic acid (DNA) can self-assemble into nanostructures through complementary cohesive strand base pairing. The production of DNA nanostructures is valuable in targeted drug delivery and biomolecular computing. With theoretical efficiency of laboratory processes in mind, we use a flexible tile model for DNA assembly. We aim to minimize the number of different types of branched junction molecules necessary to assemble certain target structures. We represent target structures as discrete graphs and branched DNA molecules as vertices with half-edges. We present the minimum numbers of required branched molecule and cohesive-end types under three levels of restrictive conditions for the tadpole and lollipop graph families. These families represent cycle and complete graphs with a path appended via a single cut-vertex. We include three general lemmas regarding such vertex-induced path subgraphs. Through proofs and examples, we demonstrate the challenges that can arise in determining optimal construction strategies.