论文标题

描述肿瘤血管生成的非局部模型

A nonlocal model describing tumor angiogenesis

论文作者

Granero-Belinchón, Rafael

论文摘要

在本文中,我们研究了血管生成的发作,并得出了一种描述它的新模型。该新模型采用具有扩散和分散术语的非本地汉堡方程式的形式。对于参数的特定值,方程将减少为$ \ partial_t p- \ frac {1} {2} {2}( - δ) $ h $表示希尔伯变换。除了推导新模型外,我们还证明了许多适合的结果。最后,显示了一些初步数字。这些数字表明,方程的动力学足够丰富,可以在有限的时间内炸毁解决方案。

In this paper we study the onset of angiogenesis and derive a new model to describe it. This new model takes the form of a nonlocal Burgers equation with both diffusive and dispersive terms. For a particular value of the parameters, the equation reduces to $$ \partial_t p-\frac{1}{2}(-Δ)^{(α-1)/2}H \partial_t p=-\frac{1}{2}(-Δ)^{α/2} p+ p\partial_x p-\partial_x p, $$ where $H$ denotes the Hilber transform. In addition to the derivation of the new model, we also prove a number of well-posedness results. Finally, some preliminary numerics are shown. These numerics suggest that the dynamics of the equation is rich enough to have solutions that blow up in finite time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源