论文标题
田间自由旋转扭矩在阳离子底物上的L10启动膜中的散装旋转扭矩开关
Field free switching through bulk spin-orbit torque in L10-FePt films deposited on vicinal substrates
论文作者
论文摘要
L10-fept以其超高垂直磁各向异性(PMA)的方式区分了自身,从而使记忆细胞具有足够的热稳定性,可以缩小到3 nm。最近发现的L10-FEPT中发现的“散装”自旋轨道扭矩提供了一种有效且可扩展的方法来操纵L10引起的磁化。但是,开关期间的外部磁场的存在限制了其实际应用,因此,L10-FEPT的无现场切换非常需要。在此手稿中,我们通过在阳离子MGO(001)底物上种植L10-FEFT的无场切换。该方法与以前建立的策略不同,因为它不需要添加其他功能层或在膜结构中造成不对称性。我们证明了无场切换非常强大,并且可以承受高达约1个KOE的强场障碍。对阳离子角,膜厚度和生长温度的依赖性显示了一个宽阔的操作窗口,用于L10-Fept的无场切换。我们证实,无野外开关的物理起源是笼子表面引起的L10-Fept的倾斜度。我们定量地表征了L10引起的膜中的自旋轨道扭矩,并发现自旋轨道扭矩没有显着影响来自阴茎底物的晶格菌株。我们的结果超出了实现无现场切换的既定策略,并可能应用于其他磁性和抗铁磁系统。
L10-FePt distinguishes itself for its ultrahigh perpendicular magnetic anisotropy (PMA), which enables memory cells with sufficient thermal stability to scale down to 3 nm. The recently discovered "bulk" spin-orbit torques in L10-FePt provide an efficient and scalable way to manipulate the L10-FePt magnetization. However, the existence of external field during the switching limits its practical application, and therefore field-free switching of the L10-FePt is in highly demand. In this manuscript, we demonstrate the field-free switching of the L10-FePt by growing it on vicinal MgO (001) substrates. This method is different from previously established strategies, as it does not need to add other functional layers or create asymmetry in the film structure. We demonstrate the field-free switching is robust and can withstand strong field disturbance up to ~1 kOe. The dependence on vicinal angle, film thickness, and growth temperature demonstrated a wide operation window for the field-free switching of the L10-FePt. We confirmed that the physical origin of the field-free switching is the vicinal surface-induced the tilted anisotropy of L10-FePt. We quantitatively characterize the spin-orbit torques in the L10-FePt films, and found the spin-orbit torques are not significantly influenced by the lattice strain from vicinal substrates. Our results extend beyond the established strategies to realize field-free switching, and potentially could be applied to other magnetic and antiferromagnetic systems.