论文标题
统一的Lech的不平等
Uniform Lech's inequality
论文作者
论文摘要
令$(R,\ Mathfrak {M})$为Noetherian dimension $ d \ geq 2 $。我们证明,如果$ e(\ wideHat {r} _ {red})> 1 $,那么对于所有$ \ mathfrak {m mathfrak {m} $ - 主要的理想,也存在$ \ varepsilon> 0 $ eq(i)$ eq(i)\ le leq le q(i) d!(e(r) - \ varepsilon)\ ell(r/i)$ for All $ \ mathfrak {m} $ - 主要理想$ i \ subseteq r $。当我们修复$ i $的发电机数量时,我们还会获得改善Lech不平等的结果。
Let $(R,\mathfrak{m})$ be a Noetherian local ring of dimension $d\geq 2$. We prove that if $e(\widehat{R}_{red})>1$, then the classical Lech's inequality can be improved uniformly for all $\mathfrak{m}$-primary ideals, that is, there exists $\varepsilon>0$ such that $e(I)\leq d!(e(R)-\varepsilon)\ell(R/I)$ for all $\mathfrak{m}$-primary ideals $I\subseteq R$. We also obtain partial results towards improvements of Lech's inequality when we fix the number of generators of $I$.