论文标题
超导电路中的纠缠干扰互补性和实验演示
Entanglement-interference complementarity and experimental demonstration in a superconducting circuit
论文作者
论文摘要
干扰粒子与获取托架信息的量子纠缠在执行Bohr的互补原理方面起着核心作用。但是,对于初始混合状态,这种纠缠与附带可见性之间的定量关系仍然没有受到影响。在这里,我们找到了量化这种关系的平等。我们的平等表征当干扰粒子(最初携带一定程度的连贯性)与A-PATH检测器的一定程度上纠缠在一起时,干扰模式可以保持如何保持。这种平等在连贯的统一框架中提供了纠缠与干扰之间的联系,从而揭示了定量的纠缠干扰互补性。我们在实验上证明了与超导电路的关系,在该电路中,谐振器充当干扰量子的一个路径检测器。测量的量子脉冲信号和Qubit-resonator纠缠的附带可见性表现出互补关系,与理论预测非常吻合。
Quantum entanglement between an interfering particle and a detector for acquiring the which-path information plays a central role for enforcing Bohr's complementarity principle. However, the quantitative relation between this entanglement and the fringe visibility remains untouched upon for an initial mixed state. Here we find an equality for quantifying this relation. Our equality characterizes how well the interference pattern can be preserved when an interfering particle, initially carrying a definite amount of coherence, is entangled, to a certain degree, with a which-path detector. This equality provides a connection between entanglement and interference in the unified framework of coherence, revealing the quantitative entanglement-interference complementarity. We experimentally demonstrate this relation with a superconducting circuit, where a resonator serves as a which-path detector for an interfering qubit. The measured fringe visibility of the qubit's Ramsey signal and the qubit-resonator entanglement exhibit a complementary relation, in well agreement with the theoretical prediction.