论文标题

两个正统基础的不相容性的分类

Classification of incompatibility for two orthonormal bases

论文作者

Xu, Jianwei

论文摘要

对于两个$ d $二维复合物希尔伯特空间的正直基础,DeBièvre[Phys。莱特牧师。 127,190404(2021)]。在这项工作中,我们介绍了$ s $ order的概念与正整数$ s $满足$ 2 \ leq s \ leq d+1的概念。我们在$ s $ order不兼容,最小支持不确定性和过渡矩阵等级缺陷之间建立了一些关系。例如,我们确定具有任何有限维度的离散傅立叶变换的不兼容顺序。

For two orthonormal bases of a $d$-dimensional complex Hilbert space, the notion of complete incompatibility was introduced recently by De Bièvre [Phys. Rev. Lett. 127, 190404 (2021)]. In this work, we introduce the notion of $s$-order incompatibility with positive integer $s$ satisfying $2\leq s\leq d+1.$ In particular, $(d+1)$-order incompatibility just coincides with the complete incompatibility. We establish some relations between $s$-order incompatibility, minimal support uncertainty and rank deficiency of the transition matrix. As an example, we determine the incompatibility order of the discrete Fourier transform with any finite dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源