论文标题

物理的对称组模棱两可的体系结构

Symmetry Group Equivariant Architectures for Physics

论文作者

Bogatskiy, Alexander, Ganguly, Sanmay, Kipf, Thomas, Kondor, Risi, Miller, David W., Murnane, Daniel, Offermann, Jan T., Pettee, Mariel, Shanahan, Phiala, Shimmin, Chase, Thais, Savannah

论文摘要

基于数学对称性的物理理论是我们对宇宙广泛特性的理解的重要组成部分。同样,在机器学习的领域中,对旋转或置换不变性等对称性的认识促进了计算机视觉,自然语言处理和其他重要应用的令人印象深刻的性能突破。在本报告中,我们认为,物理学界和更广泛的机器学习社区都有很多理解的要理解,并且有可能从对对称性集团的高度机器学习体系结构进行更深入的研究中获得。对于某些应用,将对称性引入基本结构设计可以产生更经济的模型(即包含更少但表现力,学到的参数),可解释的(即更可解释或直接映射到物理量)和/或可训练(即在数据和计算需求中更有效)。我们讨论了评估这些模型的各种功绩,以及这些方法对各种物理应用的一些潜在益处和局限性。对这些方法的研究和投资将为未来的体系结构奠定基础,这些架构在新的计算范式下可能会更强大,并将对应用它们所应用的物理系统进行更丰富的描述。

Physical theories grounded in mathematical symmetries are an essential component of our understanding of a wide range of properties of the universe. Similarly, in the domain of machine learning, an awareness of symmetries such as rotation or permutation invariance has driven impressive performance breakthroughs in computer vision, natural language processing, and other important applications. In this report, we argue that both the physics community and the broader machine learning community have much to understand and potentially to gain from a deeper investment in research concerning symmetry group equivariant machine learning architectures. For some applications, the introduction of symmetries into the fundamental structural design can yield models that are more economical (i.e. contain fewer, but more expressive, learned parameters), interpretable (i.e. more explainable or directly mappable to physical quantities), and/or trainable (i.e. more efficient in both data and computational requirements). We discuss various figures of merit for evaluating these models as well as some potential benefits and limitations of these methods for a variety of physics applications. Research and investment into these approaches will lay the foundation for future architectures that are potentially more robust under new computational paradigms and will provide a richer description of the physical systems to which they are applied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源