论文标题
Du Finetti定理的单一双重组
De Finetti Theorems for the Unitary Dual Group
论文作者
论文摘要
我们证明了统一双重组的几个de Finetti定理,也称为布朗代数。首先,我们提供了一个有限的finetti定理,该定理表征了$ r $ diagonal元素,其分布相同。这是令人惊讶的,因为它适用于有限序列,与经典和量子组的DE Finetti定理相反。而且,它不涉及任何已知的独立概念。其次,考虑到$ w^*$ - 概率空间中的无限序列,我们的特征归结为操作员可价值的免费中心圆元素,例如统一量子群$ u_n^+$。第三,上述de Finetti定理以双重群体行动为基础,这是将棕色代数作为双重组时的自然行动。但是,我们还可以为Brown代数配备Bialgebra动作,该动作更接近量子组设置。但是,然后,我们获得了一个无关的finetti定理:在棕色代数的双ggebra作用下的不变性,在$ w^*$ - 概率空间中得出零序列。另一方面,如果我们将忠实国家的假设放在$ w^*$ - 概率空间中,我们将获得类似于双重组行动案例的非平凡的一半。
We prove several de Finetti theorems for the unitary dual group, also called the Brown algebra. Firstly, we provide a finite de Finetti theorem characterizing $R$-diagonal elements with an identical distribution. This is surprising, since it applies to finite sequences in contrast to the de Finetti theorems for classical and quantum groups; also, it does not involve any known independence notion. Secondly, considering infinite sequences in $W^*$-probability spaces, our characterization boils down to operator-valued free centered circular elements, as in the case of the unitary quantum group $U_n^+$. Thirdly, the above de Finetti theorems build on dual group actions, the natural action when viewing the Brown algebra as a dual group. However, we may also equip the Brown algebra with a bialgebra action, which is closer to the quantum group setting in a way. But then, we obtain a no-go de Finetti theorem: invariance under the bialgebra action of the Brown algebra yields zero sequences, in $W^*$-probability spaces. On the other hand, if we drop the assumption of faithful states in $W^*$-probability spaces, we obtain a non-trivial half a de Finetti theorem similar to the case of the dual group action.