论文标题

$ \ mathbb {t}^d $在低规律性的$ \ mathbb {t}^d $上的某些非线性schr {Ö}的几乎全局存在

Almost global existence for some nonlinear Schr{ö}dinger equations on $\mathbb{T}^d$ in low regularity

论文作者

Bernier, Joackim, Grébert, Benoît

论文摘要

我们对$ d $二维的圆环的非线性schr {Ö} dinger方程的长期行为感兴趣,即,对于Sobolev space中的少量初始数据$ h^{s_0}(\ s_0}(\ mathbb t^d),$ s_0> d/2 $ d/2 $。我们证明,即使在这种情况下,即使在这种情况下,$ h^s $ norms,$ s \ geq 0 $,在时间内仍处于控制之下,$ t_ \ varepsilon = \ exp \ big big( - \ frac {| \ log \ log \ log \ log \ varepsilon |^2} $ h^{s_0} $,$ \ | u(0)\ | _ {h^{s_0}} = \ varepsilon $中的初始基准。为此,我们添加到方程的线性部分中,以$ \ ell^\ infty(\ mathbb z^d)$中的随机傅立叶乘数添加,并显示了几乎任何实现此乘数的稳定性结果。特别是,使用这样的傅立叶乘数,我们在$ h^{s_0}上获得了非线性schr {Ö} dinger方程的几乎全局良好,任何$ s_0> d/2 $和任何$ d $ d \ geq1 $。

We are interested in the long time behavior of solutions of the nonlinear Schr{ö}dinger equation on the $d$-dimensional torus in low regularity, i.e. for small initial data in the Sobolev space $H^{s_0}(\mathbb T^d)$ with $s_0>d/2$. We prove that, even in this context of low regularity, the $H^s$-norms, $s\geq 0$, remain under control during times, $T_\varepsilon= \exp \big(-\frac{|\log\varepsilon|^2}{4\log|\log\varepsilon|} \big)$, exponential with respect to the initial size of the initial datum in $H^{s_0}$, $\|u(0)\|_{H^{s_0}}=\varepsilon$. For this, we add to the linear part of the equation a random Fourier multiplier in $\ell^\infty(\mathbb Z^d)$ and show our stability result for almost any realization of this multiplier. In particular, with such Fourier multipliers, we obtain the almost global well posedness of the nonlinear Schr{ö}dinger equation on $H^{s_0}(\mathbb T^d)$ for any $s_0>d/2$ and any $d\geq1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源