论文标题
表面差异性量子不变的渐近学
Asymptotics of quantum invariants of surface diffeomorphisms II: The figure-eight knot complement
论文作者
论文摘要
在较早的工作中,作者提出了一个猜想,该猜想是为了进行定向的差异性$φ\ colon s \ s \ s $ to sustrice的s $,将$φ$的某些量子不变性与其映射torus $m_φ$的夸张体积相连。本文在最简单的情况下提供了这种猜想的证明,即它适用的情况,即表面$ s $是单函数的圆环,而映射的torus $m_φ$是图形结节的补充。
In earlier work, the authors introduced a conjecture which, for an orientation-preserving diffeomorphism $φ\colon S \to S$ of a surface, connects a certain quantum invariant of $φ$ with the hyperbolic volume of its mapping torus $M_φ$. This article provides a proof of this conjecture in the simplest case where it applies, namely when the surface $S$ is the one-puncture torus and the mapping torus $M_φ$ is the complement of the figure-eight knot.