论文标题
$gwγ$形式主义的自矛盾,导致Quasiparticle-Quasiparticle耦合
Self-consistency in $GWΓ$ formalism leading to quasiparticle-quasiparticle couplings
论文作者
论文摘要
在多体扰动理论中,Hedin的形式主义提供了一种系统的方式,可以迭代地计算任何交互系统的自能$σ$,前提是人们可以评估相互作用顶点$γ$。但是,这通常是不可能的,因为它涉及相对于绿色功能的$σ$的功能导数。在这里,我们分析了该衍生物的结构,将其分为四个贡献,并概述了它们每种产生的准粒子相互作用的类型。此外,我们还展示了如何将这些贡献的作用归类为两者:对先前包含的互动术语的定量重新规则化,以及通过$γ$本身的连续功能衍生物包含定性新颖的相互作用项,直到现在。如我们在Hubbard Dimer的示例中,实施后一种类型的自矛盾可以将Hedin方程的有效性扩展到高相互作用限制。我们的分析还提供了有关扰动理论景观的统一观点,展示了Hedin的形式主义如何完全包含T-Matrix方法。
Within many-body perturbation theory, Hedin's formalism offers a systematic way to iteratively compute the self-energy $Σ$ of any interacting system, provided one can evaluate the interaction vertex $Γ$ exactly. This is however impossible in general, for it involves the functional derivative of $Σ$ with respect to the Green's function. Here, we analyze the structure of this derivative, splitting it into four contributions and outlining the type of quasiparticle interactions that each of them generate. Moreover we show how, in the implementation of self-consistency, the action of these contributions can be classified into two: a quantitative renormalization of previously included interaction terms, and the inclusion of qualitatively novel interaction terms through successive functional derivatives of $Γ$ itself, neglected until now. Implementing this latter type of self-consistency can extend the validity of Hedin's equations towards the high interaction limit, as we show in the example of the Hubbard dimer. Our analysis also provides a unifying perspective on the perturbation theory landscape, showing how the T-matrix approach is completely contained in Hedin's formalism.