论文标题

联合最小值优化:改进的收敛分析和算法

Federated Minimax Optimization: Improved Convergence Analyses and Algorithms

论文作者

Sharma, Pranay, Panda, Rohan, Joshi, Gauri, Varshney, Pramod K.

论文摘要

在本文中,我们考虑了NonConvex minimax优化,这在许多现代机器学习应用(例如gans)中获得了突出性。这些应用程序中基于大规模边缘的培训数据收集要求提供沟通效率的分布式优化算法,例如在联合学习中使用的算法来处理数据。在本文中,我们分析了局部随机梯度下降(SGDA),这是SGDA算法的局部上升版本。 SGDA是最小值优化中使用的核心算法,但在分布式设置中并不理解。我们证明,本地SGDA具有\ textIt {order-optimal}样品复杂性,用于几类非Convex-concave和nonConvex-nonConcave-nonconcave minimax问题,并且还享受相对于客户次数的\ textit {LineAreal speedup}。我们提供了一种新颖而更严格的分析,可改善现有文献中的融合和沟通保证。对于非convex-PL和非convex-One-point-concave函数,我们改善了集中式最小问题的现有复杂性结果。此外,我们提出了一种基于势头的局部上山算法,该算法具有相同的收敛保证,但表现优于我们实验中所证明的本地SGDA。

In this paper, we consider nonconvex minimax optimization, which is gaining prominence in many modern machine learning applications such as GANs. Large-scale edge-based collection of training data in these applications calls for communication-efficient distributed optimization algorithms, such as those used in federated learning, to process the data. In this paper, we analyze Local stochastic gradient descent ascent (SGDA), the local-update version of the SGDA algorithm. SGDA is the core algorithm used in minimax optimization, but it is not well-understood in a distributed setting. We prove that Local SGDA has \textit{order-optimal} sample complexity for several classes of nonconvex-concave and nonconvex-nonconcave minimax problems, and also enjoys \textit{linear speedup} with respect to the number of clients. We provide a novel and tighter analysis, which improves the convergence and communication guarantees in the existing literature. For nonconvex-PL and nonconvex-one-point-concave functions, we improve the existing complexity results for centralized minimax problems. Furthermore, we propose a momentum-based local-update algorithm, which has the same convergence guarantees, but outperforms Local SGDA as demonstrated in our experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源