论文标题
在完成期间,估值扩展到有理功能领域
Extensions of valuations to rational function fields over completions
论文作者
论文摘要
给定一个有价值的字段$(k,v)$及其完成$(\ widehat {k},v)$,我们研究了$ v $ to $ v $至$ \ widehat {k}(x)$的所有可能扩展名的集合。我们表明,任何此类扩展名与基础子扩展$(k(x)| k,v)$密切相关。这些扩展之间的连接是通过最小对,关键多项式,伪-Cauchy序列和隐式恒定场来研究的。结果,我们获得了$(\ widehat {k},v)$的强大分支理论属性。我们还提供了$(k(x),v)$的必要条件,以$(\ widehat {k}(x),v)$致密。
Given a valued field $(K,v)$ and its completion $(\widehat{K},v)$, we study the set of all possible extensions of $v$ to $\widehat{K}(X)$. We show that any such extension is closely connected with the underlying subextension $(K(X)|K,v)$. The connections between these extensions are studied via minimal pairs, key polynomials, pseudo-Cauchy sequences and implicit constant fields. As a consequence, we obtain strong ramification theoretic properties of $(\widehat{K},v)$. We also give necessary and sufficient conditions for $(K(X),v)$ to be dense in $(\widehat{K}(X),v)$.