论文标题
球形泊松波
Spherical Poisson Waves
论文作者
论文摘要
我们在$ \ mathbb {s}^{2} $中介绍了泊松随机波的模型,当泊松过程的速率和波(eigenfunctions)偏离无限的能量(即频率)时,我们研究定量中心极限定理。我们考虑有限维分布,功能空间中法律中的谐波系数和收敛性,并且我们仔细研究了特征值的差异和泊松措施之间的相互作用。
We introduce a model of Poisson random waves in $\mathbb{S}^{2}$ and we study Quantitative Central Limit Theorems when both the rate of the Poisson process and the energy (i.e., frequency) of the waves (eigenfunctions) diverge to infinity. We consider finite-dimensional distributions, harmonic coefficients and convergence in law in functional spaces, and we investigate carefully the interplay between the rates of divergence of eigenvalues and Poisson governing measures.