论文标题

球形泊松波

Spherical Poisson Waves

论文作者

Bourguin, Solesne, Durastanti, Claudio, Marinucci, Domenico, Todino, Anna Paola

论文摘要

我们在$ \ mathbb {s}^{2} $中介绍了泊松随机波的模型,当泊松过程的速率和波(eigenfunctions)偏离无限的能量(即频率)时,我们研究定量中心极限定理。我们考虑有限维分布,功能空间中法律中的谐波系数和收敛性,并且我们仔细研究了特征值的差异和泊松措施之间的相互作用。

We introduce a model of Poisson random waves in $\mathbb{S}^{2}$ and we study Quantitative Central Limit Theorems when both the rate of the Poisson process and the energy (i.e., frequency) of the waves (eigenfunctions) diverge to infinity. We consider finite-dimensional distributions, harmonic coefficients and convergence in law in functional spaces, and we investigate carefully the interplay between the rates of divergence of eigenvalues and Poisson governing measures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源