论文标题
复制的纠缠否定性在ISING和免费紧凑的Boson共形场理论中的不相交间隔
Replicated Entanglement Negativity for Disjoint Intervals in the Ising and Free Compact Boson Conformal Field Theories
论文作者
论文摘要
我们使用分支点扭曲场的相关函数计算了ISING和游离紧凑型玻色子结构磁场理论的$ N $间隔复制的负率。对于某些子集$ p \ subset n $,这是$ \ rm {tr}(ρ_a^{t_p})^n $的计算,其中$ n $是replica index。这可以重新对其进行重新审议,以计算超椭圆形riemann表面上的分区函数,对于所讨论的模型,可以用该表面的周期矩阵表示此分区函数。我们详细介绍了如何构建这些表面的周期矩阵,从而为$ \ rm {tr}(ρ_A^{t_p})^n $提供了分析表达式。结果表示,当$ p = \ emptyset $对应于计算rényi熵时,公式与$ n $ n $ Intervalrényi熵的已知结果对齐。
We calculate the $N$ interval replicated negativity for the Ising and free compact boson conformal field theory using correlation functions of branch point twist fields. For some subset $P\subset N$, this is a calculation of $\rm{Tr}(ρ_A^{T_P})^n$ where $n$ is the replica index. This can be reformulated as a calculation of partition functions over superelliptic Riemann surfaces, and for the models in question, this partition function can be expressed in terms of the period matrix of this surface. We detail how to construct the period matrices for these surfaces, giving an analytic expression for $\rm{Tr}(ρ_A^{T_P})^n$. The results are expressed such that when $P = \emptyset$, which corresponds to calculating the Rényi entropy, the formulas aligns with known results for the $N$ interval Rényi entropy.