论文标题
量子宇宙弹力模型的原始结构
The primordial structure from Quantum Cosmological bouncing models
论文作者
论文摘要
通过量化一个简单的流体宇宙学模型中的背景以及扰动,我们表明,相关变量的选择存在歧义,可能导致观察物理预测不兼容。在经典的通货膨胀背景中,完全相同的规范转换导致了独特的预测,因此我们提出的歧义要求具有半经典背景,并有足够的强烈偏离经典的进化。弹跳模型显然满足了后一种情况。我们建议连贯的状态作为引入半经典宇宙的工具。我们在分析和数值上解决了扰动模式的量子动力学,并研究了扰动的振幅光谱。我们通过Bogolyubov转换从延迟观察者的角度研究了潜在的量子状态,即束davies真空。特别是,我们研究了使用瞬时真空构建的标准相干状态获得的相空间概率分布。我们讨论了随着正弦波从反弹出现的时间相移的问题。最后,我们发现该模型可以拟合到数据并阐明物理宇宙,从而限制了弹跳宇宙的自由参数。
By quantizing the background as well as the perturbations in a simple one fluid cosmological model, we show that there exists an ambiguity in the choice of relevant variables, potentially leading to incompatible observational physical predictions. In a classical inflationary background, the exact same canonical transformations lead to unique predictions, so the ambiguity we put forward demands a semiclassical background with a sufficiently strong departure from classical evolution. The latter condition is clearly satisfied by bouncing models. We propose coherent states as the tool for introducing the semiclassical universe. We solve the quantum dynamics of the perturbation modes both analytically and numerically and investigate the amplitude spectra of the perturbations. We study the underlying quantum state, the Bunch-Davies vacuum, from the point of view of late-time observers by means of the Bogolyubov transformations. In particular, we study the phase space probability distributions obtained with the standard coherent states built from instantaneous vacua. We discuss the issue of the temporal phase shift with which the modes emerge from the bounce as sine waves. Finally, we find that the model may be fitted to data and shed light on the physical universe, constraining free parameters of the bouncing universe.