论文标题

具有给定的特征多项式和乘法矩阵的整数矩阵

Integer matrices with a given characteristic polynomial and multiplicative dependence of matrices

论文作者

Habegger, Philipp, Ostafe, Alina, Shparlinski, Igor E.

论文摘要

我们考虑$ n \ times n $ - matrices的集合$ \ MATHCAL {M} _n(\ MATHBB Z; H)$,最多最多$ H $的整数元素,并从$ \ m nationcal {m Mathcal {m} _n(\ Mathbb z; h)$ f ins of $ h $的整数元素与$ \ mathcal的矩阵数(\ Mathbb z; z [x] $,相对于$ f $均匀。这补充了A. Eskin,S。Mozes和N. Shah(1996)的渐近公式,其中$ f $必须是固定且不可修复的。 使用此结果,除其他结果外,我们从$ \ Mathcal {M} _n(\ Mathbb Z; H)$中获得了$ s $ TUPLACE的上限和下限,满足了各种多重关系,包括多重依赖性和限制的子集团的子集团的子组$ \ \ \ \ Mathrm {gl} _n(gl} _n(gl} _n(q)这些问题概括了F. Pappalardi,M。Sha,I。E. Shparlinski和C. L. Stewart(2018)的标量$ n = 1 $中研究的问题,这是由于矩阵的非交换性而明显的区别。 在这些问题的动机上,我们还证明了具有固定特征多项式的各种复杂矩阵的各种特性,包括计算该品种的程度。

We consider the set $\mathcal{M}_n(\mathbb Z; H)$ of $n\times n$-matrices with integer elements of size at most $H$ and obtain a new upper bound on the number of matrices from $\mathcal{M}_n(\mathbb Z; H)$ with a given characteristic polynomial $f \in \mathbb Z[X]$, which is uniform with respect to $f$. This complements the asymptotic formula of A. Eskin, S. Mozes and N. Shah (1996) in which $f$ has to be fixed and irreducible. Using this result, among others, we obtain upper and lower bounds on the number of $s$-tuples of matrices from $\mathcal{M}_n(\mathbb Z; H)$, satisfying various multiplicative relations, including multiplicative dependence and bounded generation of a subgroup of $\mathrm{GL}_n(\mathbb Q)$. These problems generalise those studied in the scalar case $n=1$ by F. Pappalardi, M. Sha, I. E. Shparlinski and C. L. Stewart (2018) with an obvious distinction due to the non-commutativity of matrices. Motivated by these problems, we also prove various properties of the variety of complex matrices with fixed characteristic polynomial, including computing the degree of this variety.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源