论文标题
三维海森伯格集团中的时间级最小表面
Timelike minimal surfaces in the three-dimensional Heisenberg group
论文作者
论文摘要
研究了三维的海森堡组的及时表面,并研究了左左半摩恩曼指标。特别是,非垂直时间的最小表面的特征是非统一的洛伦兹谐波图到de Sitter两个phere。根据表征,将通过循环组分解建立广义的WeierStrass类型表示。
Timelike surfaces in the three-dimensional Heisenberg group with left invariant semi-Riemannian metric are studied. In particular, non-vertical timelike minimal surfaces are characterized by the non-conformal Lorentz harmonic maps into the de Sitter two phere. On the basis of the characterization, the generalized Weierstrass type representation will be established through the loop group decompositions.