论文标题

MS2MP:一条微小消息传递算法用于运动计划

MS2MP: A Min-Sum Message Passing Algorithm for Motion Planning

论文作者

Bari, Salman, Gabler, Volker, Wollherr, Dirk

论文摘要

连续时间轨迹的高斯过程(GP)通过概率推断因子图提供了快速解决运动计划问题的解决方案。但是,解决方案通常会收敛到不可避免的局部最小值,而计划的轨迹并非没有碰撞。我们提出了传递算法的消息,该算法对快速收敛时间的障碍更敏感。我们利用Min-sum消息传递算法的效用,该算法在每个节点上执行局部计算来解决因子图上的推论问题。我们首先介绍复合因子节点的概念,以将因子图转换为线性结构化图。接下来,我们开发了一种表示运动计划算法(MS2MP)的算法,该算法将数值优化与消息传递结合在一起以查找无碰撞轨迹。 MS2MP执行数值优化,以在每个复合因子节点上求解非线性最小平方最小化问题,然后利用因子图的线性结构来计算最大a后验(MAP)通过在图节点之间传递消息的最大A后验(MAP)估计。每个化合物节点的分散优化方法提高了避免遇到艰苦计划问题的障碍的敏感性。我们通过对机器人操纵器进行示例性运动计划任务进行广泛的实验来评估我们的算法。我们的评估表明,MS2MP改善了收敛时间和成功率的现有工作。

Gaussian Process (GP) formulation of continuoustime trajectory offers a fast solution to the motion planning problem via probabilistic inference on factor graph. However, often the solution converges to in-feasible local minima and the planned trajectory is not collision-free. We propose a message passing algorithm that is more sensitive to obstacles with fast convergence time. We leverage the utility of min-sum message passing algorithm that performs local computations at each node to solve the inference problem on factor graph. We first introduce the notion of compound factor node to transform the factor graph to a linearly structured graph. We next develop an algorithm denoted as Min-sum Message Passing algorithm for Motion Planning (MS2MP) that combines numerical optimization with message passing to find collision-free trajectories. MS2MP performs numerical optimization to solve non-linear least square minimization problem at each compound factor node and then exploits the linear structure of factor graph to compute the maximum a posteriori (MAP) estimation of complete graph by passing messages among graph nodes. The decentralized optimization approach of each compound node increases sensitivity towards avoiding obstacles for harder planning problems. We evaluate our algorithm by performing extensive experiments for exemplary motion planning tasks for a robot manipulator. Our evaluation reveals that MS2MP improves existing work in convergence time and success rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源