论文标题
在非相同反旋转振荡器下的新兴嵌合体状态
Emerging chimera states under non-identical counter-rotating oscillators
论文作者
论文摘要
频率在共存的共旋转(CR)系统中表现出各种集体动力学方面起着至关重要的作用。为了说明CR频率的影响,我们考虑了一个非相同和全球耦合的Stuart-Landau振荡器网络,并具有额外的扰动。首先,我们在没有扰动的情况下研究了动力转变,这表明从解体状态到群集振荡状态的过渡是通过有趣的部分同步状态发生的。紧随其后的是,系统动力学转变为振幅死亡和振荡死亡状态。重要的是,我们发现观察到的动态状态在没有扰动的情况下不会保留平等对称性。当增加扰动时,可以注意到,系统动力学表现出一种新的过渡,这对应于从不连贯的混合同步变为连贯的混合同步通过嵌合态。特别是,不连贯的混合同步和相干混合同步状态完全保留了P-对称性,而嵌合态仅部分保留P-对称性。为了证明这种部分对称性破裂(Chimera)状态的发生,我们使用盆地稳定性分析,发现PSB由于在初始状态空间中保留对称性和对称性破坏行为而存在。此外,建立了P-对称强度的度量,以量化观察到的动力学状态中的P对称性。最后,通过增加网络大小,还检查了嵌合体的鲁棒性,我们发现嵌合体状态即使在较大尺寸的网络中也是可靠的。我们还显示了上述结果的普遍性,以及相关的相关模型以及其他耦合模型,例如全球耦合的van der pol和Rössler振荡器。
Frequency plays a crucial role in exhibiting various collective dynamics in the coexisting co- and counter-rotating (CR) systems. To illustrate the impact of CR frequencies, we consider a network of non-identical and globally coupled Stuart-Landau oscillators with additional perturbation. Primarily, we investigate the dynamical transitions in the absence of perturbation, demonstrating that the transition from desynchronized state to cluster oscillatory state occurs through an interesting partial synchronization state. Followed by this, the system dynamics transits to amplitude death and oscillation death states. Importantly, we find that the observed dynamical states do not preserve the parity(P) symmetry in the absence of perturbation. When the perturbation is increased one can note that the system dynamics exhibits a new kind of transition which corresponds to a change from incoherent mixed synchronization to coherent mixed synchronization through chimera state. In particular, incoherent mixed synchronization and coherent mixed synchronization states completely preserve the P-symmetry, whereas the chimera state preserves the P-symmetry only partially. To demonstrate the occurrence of such partial symmetry breaking (chimera) state, we use basin stability analysis and discover that PSB exists as a result of the coexistence of symmetry preserving and symmetry breaking behavior in the initial state space. Further, a measure of the strength of P-symmetry is established to quantify the P-symmetry in the observed dynamical states. Finally, by increasing the network size, the robustness of the chimera is also inspected and we find that the chimera state is robust even in networks of larger sizes. We also show the generality of the above results in the related phase reduced model as well as in other coupled models such as the globally coupled van der Pol and Rössler oscillators.