论文标题

与任意重量的Rota-Baxter Operad的最小模型

The minimal model of Rota-Baxter operad with arbitrary weight

论文作者

Wang, Kai, Zhou, Guodong

论文摘要

本文调查了任意权重的rota-baxter联想代数,即从操作观点上赋予了与任意权重的rota-baxter运算符的联想代数。用$ \ rb $表示rota-baxter协会代数的出手。明确构建了同型库里德(Cooperad),可以看作是$ \ rb $的koszul双重二元组合,因为事实证明,这种同型库里德的cobar构造恰好是$ \ rb $的最小型号。这使我们能够给出同型rota-baxter联想代数的概念。也展示了Rota-baxter联想代数和基础$ L_ \ Infty $ -Algebra结构的变形复合物。

This paper investigates Rota-Baxter associative algebras of of arbitrary weights, that is, associative algebras endowed with Rota-Baxter operators of arbitrary weights from an operadic viewpoint. Denote by $\RB$ the operad of Rota-Baxter associative algebras. A homotopy cooperad is explicitly constructed, which can be seen as the Koszul dual of $\RB$ as it is proven that the cobar construction of this homotopy cooperad is exactly the minimal model of $\RB$. This enables us to give the notion of homotopy Rota-Baxter associative algebras. The deformation complex of a Rota-Baxter associative algebra and the underlying $L_\infty$-algebra structure over it are exhibited as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源