论文标题

该间隔的绝对连续同构的产生和通用性

Generation and genericity of the group of absolutely continuous homeomorphisms of the interval

论文作者

Ihli, Dakota Thor

论文摘要

我们检查了波兰人组$ h _ {+}^{ac} $的订单保留自我塑料的$ f $的$ \ weft [0,1 \ right] $,$ f $ and $ f $ and $ f $ and $ f^{ - 1} $绝对连续;特别是,我们建立了两个结果。首先,我们证明$ h _ {+}^{ac} $在拓扑上是$ 2 $生成的;实际上,它通常是$ 2 $生成的,即,在h _ {+}^{+}^{ac}^{ac} \ times h _ {+}^{+}^{aC}^{ac} $ in h _ {+}^{aC}^in h _ {+}^{ac} $ in h_ {+}^{aC} $ in y $ \ weft \ weft \ weft \ langle f,g \ right $ d p rang d p y y h _ {+}^{ac}^{ac)其次,我们证明$ h _ {+}^{ac} $允许一个密集的$g_δ$ cogacy类,我们明确表征了其元素。

We examine the Polish group $H_{+}^{AC}$ of order-preserving self-homeomorphisms $f$ of the interval $\left[ 0,1 \right]$ for which both $f$ and $f^{-1}$ are absolutely continuous; in particular, we establish two results. First, we prove that $H_{+}^{AC}$ is topologically $2$-generated; in fact, it is generically $2$-generated, i.e., there is a dense $G_δ$ set of pairs $\left( f,g \right) \in H_{+}^{AC} \times H_{+}^{AC}$ for which $\left\langle f,g \right\rangle$ is dense. Secondly, we prove that $H_{+}^{AC}$ admits a dense $G_δ$ conjugacy class, and we explicitly characterize the elements thereof.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源