论文标题
自由标量场产生的二次palatini重力中的紧凑型物体
Compact objects in quadratic Palatini gravity generated by a free scalar field
论文作者
论文摘要
我们研究了将$ f(r,q)$输入公制的公式的$ f(r,q)$的对应关系,将一般相对性(GR)与基于RICCI的重力理论(RBGS)相关联,其中$ q = r _ {(μν)} r^{(μν)} $。我们专注于标量问题的情况,并表明当人们认为GR框架中有一个免费的无质量标量时,就会出现重要的简化,从而允许建立任意$ f(r,q)$ lagrangian的信件。我们将分析特定于二次$ f(R,Q)$理论,并使用Jannis-Newman-Winicour的球形对称,静态解作为种子,以在我们的目标理论中生成新的紧凑对象。我们发现,出现了两种不同类型的溶液,一种代表赤裸的奇异性,另一个代表对不对称的虫洞,到处都是有界曲率标量的。尽管如此,后一种解决方案在地球上是不完整的。
We study the correspondence that connects the space of solutions of General Relativity (GR) with that of Ricci-based Gravity theories (RBGs) of the $f(R,Q)$ type in the metric-affine formulation, where $Q=R_{(μν)}R^{(μν)}$. We focus on the case of scalar matter and show that when one considers a free massless scalar in the GR frame, important simplifications arise that allow to establish the correspondence for arbitrary $f(R,Q)$ Lagrangian. We particularize the analysis to a quadratic $f(R,Q)$ theory and use the spherically symmetric, static solution of Jannis-Newman-Winicour as seed to generate new compact objects in our target theory. We find that two different types of solutions emerge, one representing naked singularities and another corresponding to asymmetric wormholes with bounded curvature scalars everywhere. The latter solutions, nonetheless, are geodesically incomplete.