论文标题
部分可观测时空混沌系统的无模型预测
Scale-invariance at the core of quantum black holes
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study spherically-symmetric solutions to a modified Einstein-Hilbert action with Renormalization Group scale-dependent couplings, inspired by Weinberg's Asymptotic Safety scenario for Quantum Gravity. The Renormalization Group scale is identified with the Tolman temperature for an isolated gravitational system in thermal equilibrium with Hawking radiation. As a result, the point of infinite local temperature is shifted from the classical black-hole horizon to the origin and coincides with a timelike curvature singularity. Close to the origin, the spacetime is determined by the scale-dependence of the cosmological constant in the vicinity of the Reuter fixed point: the free components of the metric can be derived analytically and are characterized by a radial power law with exponent $α= \sqrt{3}-1$. Away from the fixed point, solutions for different masses are studied numerically and smoothly interpolate between the Schwarzschild exterior and the scale-invariant interior. Whereas the exterior of objects with astrophysical mass is described well by vacuum General Relativity, deviations become significant at a Planck distance away from the classical horizon and could lead to observational signatures. We further highlight potential caveats in this intriguing result with regard to our choice of scale-identification and identify future avenues to better understand quantum black holes in relation to the key feature of scale-invariance.