论文标题

部分可观测时空混沌系统的无模型预测

Quantum algorithms for grid-based variational time evolution

论文作者

Ollitrault, Pauline J, Jandura, Sven, Miessen, Alexander, Burghardt, Irene, Martinazzo, Rocco, Tacchino, Francesco, Tavernelli, Ivano

论文摘要

量子动力学的仿真要求在第一个量化的网格编码中使用量子算法。在这里,我们提出了一种用于在第一次量化中执行量子动力学的变分量子算法。除了通过变异方法赋予的电路深度的通常减小外,与先前提出的算法相比,该算法还具有多种优势。例如,各种方法需要大量测量。但是,第一个量化的哈密顿量的网格编码仅需要在位置和动量基础上进行测量,而与系统大小无关。因此,它们与各种方法的结合特别有吸引力。此外,可以采用启发式变异形式来克服将trotterized首次将汉密尔顿人量化为量子门的硬分解的局限性。我们将此量子算法应用于一个和二维的多个系统的动力学。我们的模拟显示了先前观察到的变异时间传播方法的数值不稳定性。我们展示了如何通过子空间对角度大大减弱它们,费用额外的$ \ MATHCAL {O}(Mn^2)$ 2 Qubit的门,其中$ m $是尺寸的数量,$ n^m $是Grid点的总数。

The simulation of quantum dynamics calls for quantum algorithms working in first quantized grid encodings. Here, we propose a variational quantum algorithm for performing quantum dynamics in first quantization. In addition to the usual reduction in circuit depth conferred by variational approaches, this algorithm also enjoys several advantages compared to previously proposed ones. For instance, variational approaches suffer from the need for a large number of measurements. However, the grid encoding of first quantized Hamiltonians only requires measuring in position and momentum bases, irrespective of the system size. Their combination with variational approaches is therefore particularly attractive. Moreover, heuristic variational forms can be employed to overcome the limitation of the hard decomposition of Trotterized first quantized Hamiltonians into quantum gates. We apply this quantum algorithm to the dynamics of several systems in one and two dimensions. Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches. We show how they can be significantly attenuated through subspace diagonalization at a cost of an additional $\mathcal{O}(MN^2)$ 2-qubit gates where $M$ is the number of dimensions and $N^M$ is the total number of grid points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源