论文标题

通过非侵入性控制方案进行继续:在行人疏散场景中揭示不稳定状态

Continuation with Non-invasive Control Schemes: Revealing Unstable States in a Pedestrian Evacuation Scenario

论文作者

Panagiotopoulos, Ilias, Starke, Jens, Sieber, Jan, Just, Wolfram

论文摘要

本文提出了一个在实验室实验或模拟中进行分叉分析的框架。我们采用基于控制的延续来研究显微镜定义模型的宏观变量的动力学,从而探索了实验中基本反馈控制技术的潜在生存能力。与以前的实验研究相反,在反馈控制目标上使用了迭代性研究方法,我们提出了一种本质上无创的反馈控制定律。也就是说,控件发现了平衡的位置并同时稳定它们。我们称提出的控制控制在平衡中的反馈控制零,我们证明它能够稳定平衡分支,除非在condimension n+1的奇异点上,其中n是反馈可以取决于的状态空间尺寸的数量。 我们将方法应用于模拟的疏散场景,即行人在左右操纵障碍物后必须到达出口。该方案显示出一种磁滞现象,在微观模拟中具有双重性,并在两个可能的稳定行人流中倾斜。 我们证明了疏散方案表明,拟议的控制定律能够统一发现并稳定沿整个分支的稳定流,包括其他非侵入性反馈控制方法变得单数。

This paper presents a framework to perform bifurcation analysis in laboratory experiments or simulations. We employ control-based continuation to study the dynamics of a macroscopic variable of a microscopically defined model, exploring the potential viability of the underlying feedback control techniques in an experiment. In contrast to previous experimental studies that used iterative root-finding methods on the feedback control targets, we propose a feedback control law that is inherently non-invasive. That is, the control discovers the location of equilibria and stabilizes them simultaneously. We call the proposed control zero-in-equilibrium feedback control and we prove that it is able to stabilize branches of equilibria, except at singularities of codimension n+1, where n is the number of state space dimensions the feedback can depend on. We apply the method to a simulated evacuation scenario were pedestrians have to reach an exit after maneuvering left or right around an obstacle. The scenario shows a hysteresis phenomenon with bistability and tipping between two possible steady pedestrian flows in microscopic simulations. We demonstrate for the evacuation scenario that the proposed control law is able to uniformly discover and stabilize steady flows along the entire branch, including points where other non-invasive approaches to feedback control become singular.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源