论文标题

电子 - 光子问题的累积方法。 I.扰动扩展

Cumulant methods for electron-phonon problems. I. Perturbative expansions

论文作者

Robinson, Paul J., Dunn, Ian S., Reichman, David R.

论文摘要

在这项工作中,我们研究了累积膨胀(CE)在零和有限温度下捕获电子偶联系统中捕获单粒子光谱信息的能力。特别是,与数值精确的方法相比,我们介绍了一维荷斯坦模型的第二阶CE和四阶CE的全面研究。我们研究了有限尺寸的系统以及对热力学极限的方法,从热力学极限内外进行了区分和连接,这使得对CE在整个波矢量捕获实际频率信息的能力方面有了更深入的了解。我们发现,对于零电子动量,二阶CE在低温和高温下很好地描述了光谱函数。但是,对于非零电子动量,CE仅在高温下才能准确。我们分析了四阶累积剂,并发现它改善了对单粒子绿色功能中编码的短时动力学的描述,但它可以在时域引入分歧以及光谱函数中的非物理负光谱。举止良好时,四阶CE确实为二阶CE提供了明显的准确校正。最后,我们利用结果来评论使用CE作为计算材料的实际建模中运输行为的工具。

In this work we investigate the ability of the cumulant expansion (CE) to capture one-particle spectral information in electron-phonon coupled systems at both zero and finite temperatures. In particular, we present a comprehensive study of the second- and fourth-order CE for the one-dimensional Holstein model as compared with numerically exact methods. We investigate both finite sized systems as well as the approach to the thermodynamic limit, drawing distinctions and connections between the behavior of systems in and away from the thermodynamic limit that enable a greater understanding of the ability of the CE to capture real-frequency information across the full range of wave vectors. We find that for zero electronic momentum, the spectral function is well described by the second-order CE at low and high temperatures. However, for non-zero electronic momenta, the CE is only accurate at high temperature. We analyze the fourth-order cumulant, and find that while it improves the description of the short-time dynamics encoded in the one-particle Green's function, it can introduce divergences in the time domain as well as unphysical negative spectral weight in the spectral function. When well-behaved, the fourth-order CE does provide notable accurate corrections to the second-order CE. Finally, we use our results to comment on the use of the CE as a tool for calculating transport behavior in the realistic ab initio modeling of materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源