论文标题
在$ m^2 \ times \ mathbb {r}^n $中的气缸定理上
On the Cylinder Theorem in $M^2\times \mathbb{R}^n $
论文作者
论文摘要
考虑一个带有高斯曲率的表面$ m^2 $要么$ <0 $或$> 0 $。我们证明,在$ m^2 \ times \ mathbb {r}^n $圆柱体中被描述为外部和内在曲率等于零的超曲面。
Consider a surface $M^2$ with Gaussian curvature either $< 0$ or $> 0$. We prove that in $M^2\times \mathbb{R}^n$ cylinders are characterized as the hypersurfaces with both the extrinsic and intrinsic curvatures equal to zero.