论文标题

贴片相似性意识到视觉变压器的无数据量化

Patch Similarity Aware Data-Free Quantization for Vision Transformers

论文作者

Li, Zhikai, Ma, Liping, Chen, Mengjuan, Xiao, Junrui, Gu, Qingyi

论文摘要

视觉变压器最近在各种计算机视觉任务上取得了巨大成功。然而,他们的高模型复杂性使部署在资源约束设备上的挑战。量化是一种有效的方法,可以减少模型复杂性,并且可以在模型部署期间解决数据隐私和安全问题的无数据量化已获得广泛的兴趣。不幸的是,所有现有的方法(例如BN正则化)都是为卷积神经网络而设计的,不能应用于具有明显不同的模型体系结构的视觉变压器。在本文中,我们提出了PSAQ-VIT,这是视觉变压器的贴片相似性无数据量化框架,以基于Vision Transformer的独特属性来生成“现实”样本,以校准量化参数。具体而言,我们分析了自我发场模块的属性,并在其处理高斯噪声和真实图像的处理中揭示了一般差异(斑块相似性)。以上见解指导我们设计一个相对值度量,以优化高斯噪声以近似真实的图像,然后将其用于校准量化参数。对各种基准进行了广泛的实验和消融研究,以验证PSAQ-VIT的有效性,这甚至可以胜过实现DATA驱动的方法。代码可在以下网址找到:https://github.com/zkkli/psaq-vit。

Vision transformers have recently gained great success on various computer vision tasks; nevertheless, their high model complexity makes it challenging to deploy on resource-constrained devices. Quantization is an effective approach to reduce model complexity, and data-free quantization, which can address data privacy and security concerns during model deployment, has received widespread interest. Unfortunately, all existing methods, such as BN regularization, were designed for convolutional neural networks and cannot be applied to vision transformers with significantly different model architectures. In this paper, we propose PSAQ-ViT, a Patch Similarity Aware data-free Quantization framework for Vision Transformers, to enable the generation of "realistic" samples based on the vision transformer's unique properties for calibrating the quantization parameters. Specifically, we analyze the self-attention module's properties and reveal a general difference (patch similarity) in its processing of Gaussian noise and real images. The above insights guide us to design a relative value metric to optimize the Gaussian noise to approximate the real images, which are then utilized to calibrate the quantization parameters. Extensive experiments and ablation studies are conducted on various benchmarks to validate the effectiveness of PSAQ-ViT, which can even outperform the real-data-driven methods. Code is available at: https://github.com/zkkli/PSAQ-ViT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源