论文标题

部分可观测时空混沌系统的无模型预测

General properties of fidelity in non-Hermitian quantum systems with PT symmetry

论文作者

Tu, Yi-Ting, Jang, Iksu, Chang, Po-Yao, Tzeng, Yu-Chin

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The fidelity susceptibility is a tool for studying quantum phase transitions in the Hermitian condensed matter systems. Recently, it has been generalized with the biorthogonal basis for the non-Hermitian quantum systems. From the general perturbation description with the constraint of parity-time (PT) symmetry, we show that the fidelity $\mathcal{F}$ is always real for the PT-unbroken states. For the PT-broken states, the real part of the fidelity susceptibility $\mathrm{Re}[\mathcal{X}_F]$ is corresponding to considering both the PT partner states, and the negative infinity is explored by the perturbation theory when the parameter approaches the exceptional point (EP). Moreover, at the second-order EP, we prove that the real part of the fidelity between PT-unbroken and PT-broken states is $\mathrm{Re}\mathcal{F}=\frac{1}{2}$. Based on these general properties, we study the two-legged non-Hermitian Su-Schrieffer-Heeger (SSH) model and the non-Hermitian XXZ spin chain. We find that for both interacting and non-interacting systems, the real part of fidelity susceptibility density goes to negative infinity when the parameter approaches the EP, and verifies it is a second-order EP by $\mathrm{Re}\mathcal{F}=\frac{1}{2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源