论文标题

Sasakiricci流的叶分隔术在Sasakian 5-manifolds上

Foliation divisorial contraction by the Sasaki-Ricci flow on Sasakian 5-manifolds

论文作者

Chang, Shu-Cheng, Lin, Chien, Wu, Chin-Tung

论文摘要

令(m,η,ξ,φ,g)为紧凑的准常规sasakian 5-manifold,具有有限的环状叶面象征性(1/r)(1,a)类型。首先,我们通过应用循环商叶酸奇点的分辨率来得出叶叶最小模型程序。其次,基于对叶面奇异性分辨率的局部模型的研究,我们证明了叶面规范手术收缩或sasaki-ricci流下的叶面极端射线收缩。结果,我们证明了由于Song-Tian和Song-Weinkove而引起的Keahler-Ricci流的分析最小模型程序的Sasaki类似物。

Let (M,η,ξ,Φ,g) be a compact quasi-regular Sasakian 5-manifold with finite cyclic quotient foliation singularities of type (1/r)(1,a). First, we derive the foliation minimal model program by applying the resolution of cyclic quotient foliation singularities. Secondly, based on the study of local model of resolution of foliation singularities, we prove the foliation canonical surgical contraction or the foliation extremal ray contraction under the Sasaki-Ricci flow. As a consequence, we prove a Sasaki analogue of analytic minimal model program with the Keahler-Ricci flow due to Song-Tian and Song-Weinkove.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源