论文标题

具有单数电势和吸收项的半线性椭圆形schrödinger方程

Semilinear elliptic Schrödinger equations with singular potentials and absorption terms

论文作者

Gkikas, Konstantinos T., Nguyen, Phuoc-Tai

论文摘要

令$ c^2 $有界域和$ c^2 $界面域,$ c^2 $有界域和$ c^2 $ submanifold,$ c^2 $ submanifold,没有边界,$ k $ dimension $ k $,$ 0 \ leq leq k <n-2 $。 pot $l_μ=δ+μd_σ^{ - 2} $ in $ω\setMinusσ$,其中$d_σ(x)= \ mathrm {dist}(x,x,σ)$和$μ$是一个参数。 We investigate the boundary value problem (P) $-L_μu + g(u) = τ$ in $Ω\setminus Σ$ with condition $u=ν$ on $\partial Ω\cup Σ$, where $g: \mathbb{R} \to \mathbb{R}$ is a nondecreasing, continuous function, and $τ$ and $ν$ are positive measures.反方势能$d_σ^{ - 2} $,吸收项$ g(u)$与测量数据$τ,ν$之间的竞争效应之间的复杂相互作用揭示了问题(p)可解决的情况。我们为存在解决方案的$ g $增长提供了鲜明的条件。当$ g $是一个电源函数时,即$ g(u)= | u |^{p-1} u $,$ p> 1 $,我们表明问题(p)承认了几个关键指数,因为在亚临界情况下存在单数解决方案,在亚临界情况下存在单数解决方案(即,$ p $在关键的指数中都比$ pribalitive)在$ pritagential Case(即$ p的范围内都要重复)。最后,我们建立了以适当的能力(p)的适当能力表示的各种必要和充分的条件。

Let $Ω\subset \mathbb{R}^N$ ($N \geq 3$) be a $C^2$ bounded domain and $Σ\subset Ω$ be a compact, $C^2$ submanifold without boundary, of dimension $k$ with $0\leq k < N-2$. Put $L_μ= Δ+ μd_Σ^{-2}$ in $Ω\setminus Σ$, where $d_Σ(x) = \mathrm{dist}(x,Σ)$ and $μ$ is a parameter. We investigate the boundary value problem (P) $-L_μu + g(u) = τ$ in $Ω\setminus Σ$ with condition $u=ν$ on $\partial Ω\cup Σ$, where $g: \mathbb{R} \to \mathbb{R}$ is a nondecreasing, continuous function, and $τ$ and $ν$ are positive measures. The complex interplay between the competing effects of the inverse-square potential $d_Σ^{-2}$, the absorption term $g(u)$ and the measure data $τ,ν$ discloses different scenarios in which problem (P) is solvable. We provide sharp conditions on the growth of $g$ for the existence of solutions. When $g$ is a power function, namely $g(u)=|u|^{p-1}u$ with $p>1$, we show that problem (P) admits several critical exponents in the sense that singular solutions exist in the subcritical cases (i.e. $p$ is smaller than a critical exponent) and singularities are removable in the supercritical cases (i.e. $p$ is greater than a critical exponent). Finally, we establish various necessary and sufficient conditions expressed in terms of appropriate capacities for the solvability of (P).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源