论文标题
通过量子误差校正,在测量三分之一系统的测量上实现Heisenberg扩展
Achieving Heisenberg Scaling on Measurement of A Three-Qubit System via Quantum Error Correction
论文作者
论文摘要
在多体量子系统中,观察者可以获得的量子Fisher信息容易受到逆转的影响。因此,通常无法实现量子增强的计量学,例如海森堡缩放。我们通过两种不同的方法表明,通过应用定期量子误差校正,我们可以在三分之一的塔维斯巡回赛模型上长时间实现海森贝格缩放,其中三个两级原子在某些近似值下与单个腔体模式相互作用。还讨论了对任意数量的原子病例的概括。
In many-body quantum systems, the quantum Fisher information an observer can obtain is susceptible to decoherence. Consequently, quantum enhanced metrology, such as Heisenberg scaling, cannot usually be achieved. We show, via two distinct methods, that by applying periodic quantum error corrections, we can achieve the Heisenberg scaling for an extended period of time on a three-qubit Tavis-Cumming Model, where three two-level atoms interact with a single cavity mode, under certain approximations. The generalization to arbitrary number of atoms case is also discussed.