论文标题
自动驾驶中的车道检测系统的物理后门攻击
Physical Backdoor Attacks to Lane Detection Systems in Autonomous Driving
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Modern autonomous vehicles adopt state-of-the-art DNN models to interpret the sensor data and perceive the environment. However, DNN models are vulnerable to different types of adversarial attacks, which pose significant risks to the security and safety of the vehicles and passengers. One prominent threat is the backdoor attack, where the adversary can compromise the DNN model by poisoning the training samples. Although lots of effort has been devoted to the investigation of the backdoor attack to conventional computer vision tasks, its practicality and applicability to the autonomous driving scenario is rarely explored, especially in the physical world. In this paper, we target the lane detection system, which is an indispensable module for many autonomous driving tasks, e.g., navigation, lane switching. We design and realize the first physical backdoor attacks to such system. Our attacks are comprehensively effective against different types of lane detection algorithms. Specifically, we introduce two attack methodologies (poison-annotation and clean-annotation) to generate poisoned samples. With those samples, the trained lane detection model will be infected with the backdoor, and can be activated by common objects (e.g., traffic cones) to make wrong detections, leading the vehicle to drive off the road or onto the opposite lane. Extensive evaluations on public datasets and physical autonomous vehicles demonstrate that our backdoor attacks are effective, stealthy and robust against various defense solutions. Our codes and experimental videos can be found in https://sites.google.com/view/lane-detection-attack/lda.